Data Fusion Using Source Separation:

Why and How to Account for Multiple Types of Statistical Diversity

Tülay Adalı

University of Maryland Baltimore County Machine Learning for Signal Processing Lab Baltimore, MD http://mlsp.umbc.edu/

The 20th Annual Signal & Image Sciences Workshop CASIS, Lawrence Livermore National Laboratory Livermore, CA

May 18, 2016

Tülay Adalı UMBC 1 / 56

What is diversity?

A statistical property that enables identification, and for multiple datasets, also links them...

Tülay Adalı

UMBC

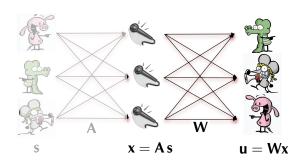
Independent component analysis (ICA) assumes that the underlying sources are statistically *independent*



Tülay Adalı UMBC

3 / 56

Independent component analysis (ICA) assumes that the underlying sources are statistically *independent*



Independence is a strong assumption and hence enables a solution subject to *only* a permutation and scaling ambiguity

Independence is also a plausible assumption in many applications

Tülay Adalı UMBC 4 / 56

ICA is based on the classical cocktail party problem

Artist: Annie Campbell

But besides the cocktail party problem (audio and speech processing) applications of ICA include

- medical data analysis and fusion (e.g., fMRI, EEG, ECG, sMRI)
- noise/interference removal
- communications (e.g., multiuser detection in CDMA)
- data mining
- sensor array processing
- remote sensing
- financial and other time series analysis
- feature extraction for detection/classification

Tülay Adalı UMBC 5 / 56

Outline

- Single and multi-set independent decompositions
 - ICA & diversity
 - IVA & diversity
- 2 Applications—Role of diversity
 - ICA of a single dataset
 - Multi-set data fusion
 - Multi-modal data fusion

UMBC 6 / 56

Very brief history of ICA

- Hérault and Jutten, Snowbird, Utah, 1986
 Source separation with nonlinear decorrelations
- Jutten, Hérault, and Guerin, 1988
 An adaptive algorithm
- Comon, Cardoso, early 1990s
 ICA, cost/contast functions
 Explicit computation of higher-order statistics, e.g., JADE
- Bell and Sejnowski, 1995
 Information maximization: Infomax
- Hyvärinen 1997, 1999
 Maximization of non-Gaussianity: FastICA
- First International Workshop on ICA and Signal Separation, 1999, Aussois, France
- 13th LVA/ICA Conference will be held in Grenoble, France

Multiple "routes" for ICA

Given that the sources
$$s_n$$
 in $\mathbf{s} = \begin{bmatrix} s_1 \\ s_2 \\ \vdots \\ s_N \end{bmatrix}$ are mutually independent,

different types of diversity—statistical property—can be used to achieve ICA:

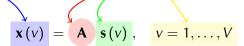
- Non-Gaussianity (HOS) Infomax, FastICA, EFICA, JADE, EBM, RADICAL, and many others
- Sample (linear) dependence (nonwhiteness) AMUSE, SOBI, WASOBI, and others
- Nonstationarity
- Noncircularity—for complex data

Why not account for multiple types of diversity jointly?

Then, use random processes to define the latent model

- Sample index
- Unknown source (component) vector -
- Unknown invertible mixing matrix

Mixtures



Given $\mathbf{x}(v) = \mathbf{A} \mathbf{s}(v)$ where $\mathbf{x}(v)$, $\mathbf{s}(v) \in \mathbb{R}^N$ and $\mathbf{A} \in \mathbb{R}^{N \times N}$

Estimate a demixing matrix **W**, such that the source estimates are given by

$$\mathbf{u}(v) = \mathbf{W}\mathbf{x}(v)$$

UMBC 10 / 56

Mutual information <u>rate</u> can account for all four types of statistical diversity

We can estimate $\mathbf{u}(v) = \mathbf{W}\mathbf{x}(v)$ where $u_n(v) = \mathbf{w}_n^T\mathbf{x}(v)$ by

$$\mathcal{I}_r(\mathbf{W}) = \sum_{n=1}^N H_r(u_n) - \underbrace{H_r(\mathbf{u})}_{\log |\det \mathbf{W}| + H_r(\mathbf{x})}$$

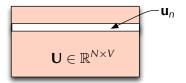
where the entropy rate $H_r(u_n) = \lim_{v \to \infty} [H[u_n(1), \dots, u_n(v)]/v]$ and $H(u_n) = -E\{\log p_{s_n}(u)\}$

Hence, can achieve ICA by minimizing

$$\mathcal{I}_r(\mathbf{W}) = \sum_{n=1}^N H_r(u_n) - \log|\det \mathbf{W}| - C$$

For given $\mathbf{X} \in \mathbb{R}^{N \times V}$, can write the likelihood function

Define \mathbf{u}_n as the *n*th row of $\mathbf{U} = \mathbf{W}\mathbf{X}$



$$\mathcal{L}_{\mathsf{ICA}}(\mathbf{W}) = \sum_{n=1}^{N} \log p_{s_n}(\mathbf{u}_n) + V \log |\det \mathbf{W}|$$

Note that optimality properties of maximum likelihood imply the estimation of both **W** and $p_{s_n}(\cdot)$

Tülay Adalı UMBC 12 / 56

Identifiability of the ICA model

- Compute the Hessian of $\mathcal{L}_{ICA}(\mathbf{W})$ with respect to the global demixing matrix $\mathbf{G} = \mathbf{WA}$, and evaluate at the optimum $\mathbf{G} = \mathbf{I}$, hence $u_n = s_n$
- The Fisher information matrix can be characterized by the 2 × 2 matrix, i.e., by pairwise relationship of sources for 1 ≤ m < n ≤ N

$$\begin{aligned} \mathbf{J}_{m,n} &= \left[\begin{array}{cc} \kappa_{m,n} & 1 \\ 1 & \kappa_{n,m} \end{array} \right], \ \text{ where } \ \kappa_{n,m} = \operatorname{trace} \left(E \left\{ \boldsymbol{\psi}(\mathbf{s}_n) \boldsymbol{\psi}^\top(\mathbf{s}_n) \right\} \mathbf{R}_m \right), \\ \boldsymbol{\psi}(\mathbf{s}_n) &= -\frac{\partial \log p_{\mathbf{s}_n}(\mathbf{s}_n)}{\partial \mathbf{s}_n} \in \mathbb{R}^V, \ \text{ and } \ \mathbf{R}_n = E \{ \mathbf{s}_n \mathbf{s}_n^\top \} \in \mathbb{R}^{V \times V} \end{aligned}$$

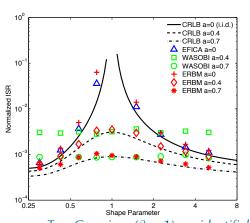
Separation is possible— $J_{m,n}$ remains positive definite—as long as sources are not both Gaussian with proportional covariance matrices $\mathbf{R}_m = \delta^2 \mathbf{R}_n$ Since for i.i.d. sources, $\sigma_m^2 = \delta^2 \sigma_n^2$, in this case, can identify a single Gaussian

[Cardoso, 2010]

Tülay Adalı UMBC 13 / 56

Performance improves with the addition of each type of diversity

(Induced) CRLB as a function of shape parameter β



Two sources:

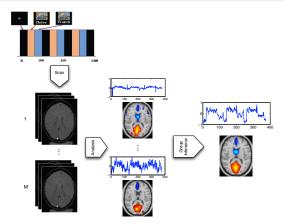
 $s_1(v)$ is i.i.d. & GGD with β – non-Gaussianity $s_2(v) = as_2(v-1) + \xi(v)$ with i.i.d. and Gaussian $\xi(v)$ a – sample dependence

- (Induced) CRLB
- EFICA only non-Gaussianity
- WASOBI only sample dependence
- ERBM Both non-Gaussianity and sample dependence

Two Gaussians ($\beta = 1$) are identifiable as long as one is not i.i.d.

Tülay Adalı UMBC 14 / 56

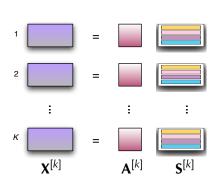
Joint analysis of multiple datasets arises in many applications



For example in fMRI experiments, we are interested in group inferences or studying differences among groups

Tülay Adalı UMBC 15 / 56

Other examples



- Remote Sensing:
 Hyperspectral data fusion and analysis,
 beamforming problems
- Video/image Processing:
 Object detection, scene analysis
- Medical Image Analysis: Group fMRI, EEG over multiple epochs, or multiple subjects
- Medical Data Fusion: Fusion of fMRI, sMRI, EEG, and genetic, or multi-task data
- Audio/Speech Processing: Frequency domain ICA

Note statistical dependence as the source of diversity across the datasets

Tülay Adalı UMBC 16 / 56

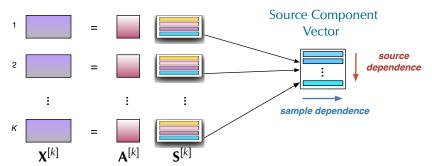
Why perform a joint analysis?

- When performing analysis of multiple datasets, we can perform ICA individually on each dataset
- However, resulting estimates have different permutations making multi-dataset analysis difficult

By performing a joint analysis, can resolve the permutation ambiguity across datasets

More importantly, can make use of the <u>true multivariate nature</u> of the data and the <u>statistical dependence across</u> the datasets for better performance

Now, can take advantage of one more statistical diversity

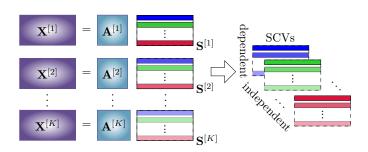


And of course HOS, nonstationarity, and noncircularity as well

Multi-dataset analysis – Joint blind source separation

Original ICA:
$$\mathbf{X} = \mathbf{AS}$$
 $\mathbf{U} = \mathbf{WX}, \quad \mathbf{X}, \mathbf{U}, \mathbf{S} \in \mathbb{R}^{N \times V}$ Joint analysis: $\mathbf{X}^{[k]} = \mathbf{A}^{[k]} \mathbf{S}^{[k]}$ $\mathbf{U}^{[k]} = \mathbf{W}^{[k]} \mathbf{X}^{[k]}, \quad k = 1, \dots, K$

$$\begin{bmatrix} \mathbf{X}^{[1]} \\ \vdots \\ \mathbf{X}^{[K]} \end{bmatrix} = \begin{bmatrix} \mathbf{A}^{[1]} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \ddots & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{A}^{[K]} \end{bmatrix} \begin{bmatrix} \mathbf{S}^{[1]} \\ \vdots \\ \mathbf{S}^{[K]} \end{bmatrix} \iff \mathbf{X} = \mathbf{A}\mathbf{S} \text{ where } \mathbf{A} = \bigoplus \sum_{k=1}^{K} \mathbf{A}^{[k]}$$



Tülay Adalı

UMBC

Independent vector analysis (IVA) is also achieved by minimizing mutual information rate

Minimize MI rate for N sources and K datasets

$$\mathcal{I}_{r}^{\mathsf{IVA}}(\boldsymbol{\mathcal{W}}) = \sum_{n=1}^{N} H_{r}(\mathbf{u}_{n}) - \sum_{k=1}^{K} \log \left| \det \left(\mathbf{W}^{[k]} \right) \right| - C$$

<u>now</u>, among source component vectors (SCVs), $\mathbf{s}_n(v)$ estimated by $\mathbf{u} = \mathbf{W}\mathbf{x}$

Can rewrite the cost as

$$\mathcal{I}_{r}^{\mathsf{IVA}}(\boldsymbol{\mathcal{W}}) = \sum_{n=1}^{N} \left(\sum_{k=1}^{K} \underbrace{H_{r}[u_{n}^{[k]}]}_{\mathsf{Entropy}} - \underbrace{\mathcal{I}_{r}[\mathbf{u}_{n}]}_{\mathsf{NI}} \right) - \sum_{k=1}^{K} \log \left| \det \left(\mathbf{W}^{[k]} \right) \right| - C$$
rate

MI rate

[Kim, et al., 2006; Anderson, et al., 2014]

Tülay Adalı UMBC 20 / 56

We can similarly write the log likelihood

For given
$$\mathbf{X}^{[k]}$$
, $k = 1, \dots, K$, we have

$$\mathcal{L}_{\text{IVA}}(\boldsymbol{\mathcal{W}}) = \sum_{n=1}^{N} \log \left(p_n(\mathbf{U}_n) \right) + V \sum_{k=1}^{K} \log \left| \det \left(\mathbf{W}^{[k]} \right) \right|$$

where the score function for \mathbf{U}_n is

$$\Psi_{n}\left(\mathbf{U}_{n}\right) = -\frac{\partial \log \left(p_{n}\left(\mathbf{U}_{n}\right)\right)}{\partial \mathbf{U}_{n}} \in \mathbb{R}^{K \times V}$$

and the source component matrix (SCM) \mathbf{U}_n is $\mathbf{u}_n(v)$ for $v = 1, \dots, V$

Tülay Adalı UMBC 21 / 56

Identification conditions for IVA are determined similarly

- Compute the Hessian of $\mathcal{L}_{IVA}(\mathcal{W})$ wrt the block diagonal global demixing matrix $\mathbf{G} = \bigoplus_{k=1}^K \mathbf{W}_k \mathbf{A}_k = \bigoplus_{k=1}^K \mathbf{G}_k$ at the optimum $\mathbf{G} = \mathbf{I}$, hence $\mathbf{U}_n = \mathbf{S}_n$
- Fisher information matrix is now characterized through interactions of two block matrices

$$\mathbf{J}_{m,n} \triangleq \begin{bmatrix} \mathbf{\mathcal{K}}_{m,n} & \mathbf{I}_{K} \\ \mathbf{I}_{K} & \mathbf{\mathcal{K}}_{n,m} \end{bmatrix} \in \mathbb{R}^{2K \times 2K}, \ 1 \leq m < n \leq N$$

where
$$\left\{ \boldsymbol{\mathcal{K}}_{m,n} \right\}_{k_1,k_2} = \frac{1}{V} E\left\{ \left(\boldsymbol{\psi}_m^{[k_1]} \right)^\mathsf{T} \mathbf{s}_n^{[k_1]} \left(\mathbf{s}_n^{[k_2]} \right)^\mathsf{T} \boldsymbol{\psi}_m^{[k_2]} \right\}$$
 and $\boldsymbol{\Psi}_n(\mathbf{S}_n) = -\frac{\partial \log \left(\rho_n \left(\mathbf{S}_n \right) \right)}{\partial \mathbf{S}_n}, \, \boldsymbol{\psi}_n^{[k]} = \boldsymbol{\Psi}_n^\mathsf{T} \mathbf{e}_k$

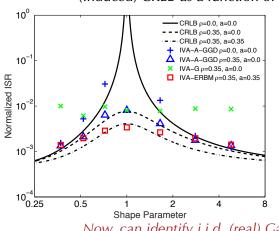
Identification is possible as long as no two SCMs have α -Gaussian components for which $\mathbf{R}_m = (\mathbf{I}_V \otimes \mathbf{D}) \, \mathbf{R}_n \, (\mathbf{I}_V \otimes \mathbf{D})$, for $1 \le m \ne n \le N$

[Anderson, et al., 2014]

Tülay Adalı UMBC 22 / 56

Performance again improves with the addition of each type of diversity

(Induced) CRLB as a function of shape parameter β



Two sets of sources (SCVs):

- Multivar. i.i.d. GGD pair with β and ρ
- First-order AR vector process with $\mathbf{A} = \mathbf{al}$
- (Induced) CRLB
- IVA-A-GGD HOS
 IVA-A-GGD HOS & source dependence
- IVA-G source correlation
- IVA-ERBM HOS & source & sample dependence

Now, can identify i.i.d. (real) Gaussians as well...

Tülay Adalı UMBC 23 / 56

Short intermediate summary—Focus on diversity

Using multiple types of diversity, **jointly**, we

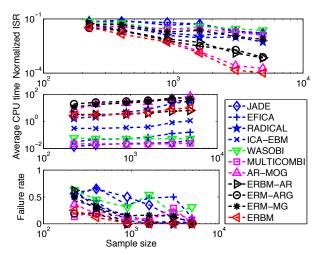
- can identify a broader class of signals, and
- maximally use all available information, design *efficient* estimators

both for single and multi-set data analysis/fusion

Need to incorporate diversity into solutions, through

- explicit modeling—single and multiple datasets
- identifying *relevant* sources of diversity to define the datasets and modify the model—*multiple datasets*

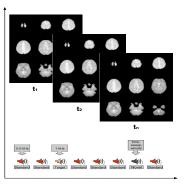
A classic example: "Artificial mixture" of images



Separation performance for artificial mixture of eight images

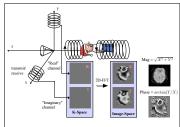
Tülay Adalı UMBC 26 / 56

What about when applied to practical problems? Functional MRI analysis—A fruitful application domain for ICA



Functional MRI (fMRI) reports on local brain hemodynamics

MRI signal is acquired as a quadrature signal using two orthogonal detectors

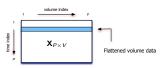


Hence, it is inherently complex valued

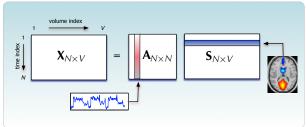
Tülay Adalı UMBC 27 / 56

Spatial ICA of fMRI finds maximally spatially independent components (spatial maps)

Form the observation (mixture) matrix **X** by stacking volume data at each time instant



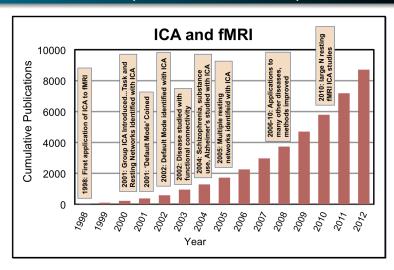
Spatial ICA of fMRI



[McKeown, et al., '98]

Tülay Adalı UMBC 28 / 56

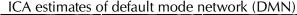
ICA has been widely used for fMRI analysis

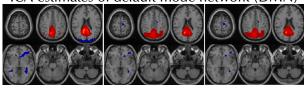


[Calhoun and Adalı, 2012]

Tülay Adalı UMBC 29 / 56

Flexible ICA algorithms such as EBM and ERBM provide better performance





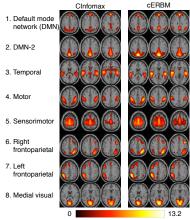
Infomax EBM ERBM

	Infomax	EBM	ERBM
Number of voxels			
overlapping with the mask	2386	3291	3328
Sensitivity of t map			
with corresponding mask	0.73	0.82	0.82

[Du, et al., 2011]

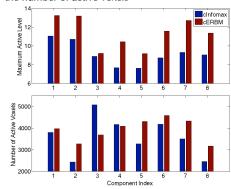
Tülay Adalı UMBC 30 / 56

Incorporation of multiple types of diversity yields better estimates



Z-maps of fMRI data from 100 subjects

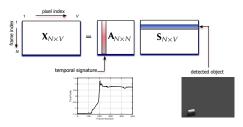
Maximum level of activation and the number of active yoxels



[Du et al., 2014 and 2016]

ERBM provides better performance for a video application as well

Abondoned object detection



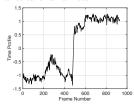
Sample video

Summarize temporal dynamics through independent components

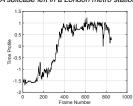
32 / 56

Other detection examples—videos of varying difficulty

Parked car on a main road



A suitcase left in a London metro station

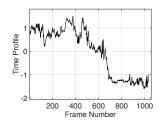


UMBC 33 / 56

ICA of a single dataset Multi-set data fusion Multi-modal data fusio

For a night video, detection is possible only using sample dependence & HOS—using ERBM

Detected component and temporal signature using ERBM



Infomax, EFICA, EBM, and WASOBI all fail to detect the component

Original frame

Multi-set vs multi-modal fusion

Multi-set data

Information collected using the same *modality* at different conditions, observation times, using multiple experiments or subjects,...

Datasets are of the same type and dimension

Multi-modal data

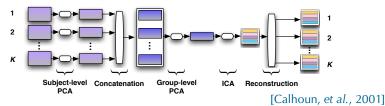
Information collected through different types of detectors/sensors

- Medical imaging data, hemodynamic response and electrical activity
- Remote sensing, optical, and radar imagery
- Audio and video data

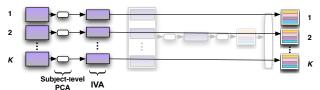
Datasets are of different nature, resolution, and size

Group ICA vs IVA for the analysis of multi-subject fMRI data

Group ICA defines a group subspace and performs a single ICA



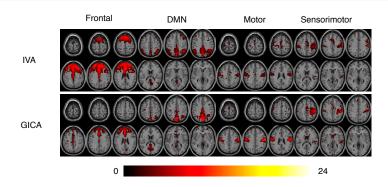
IVA avoids the common subspace, hence is expected to better preserve variability



[Lee, et al., 2008, Déa, et al., 2011]

Tülay Adalı UMBC 36 / 56

IVA leads to better performance in real fMRI data



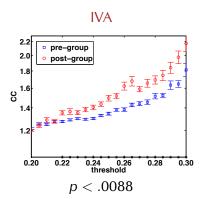
Thresholded *t*-maps at a significance level of 0.05 for stroke patients performing a motor task

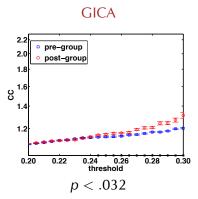
[Laney, et al., 2015]

Tülay Adalı UMBC 37 / 56

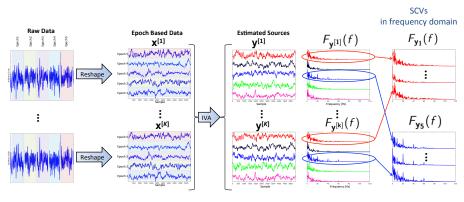
And results in lower p-values

Average clustering coefficient using graph-theoretical analysis





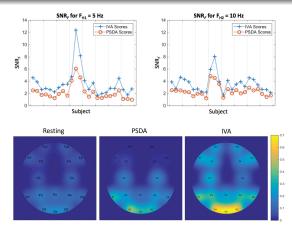
IVA for enhancement of steady state visually evoked potentials (SSVEP)



[Emge, et al., 2015]

Tülay Adalı UMBC 39 / 56

IVA consistently shows enhancement across subjects and experiments for SSVEP



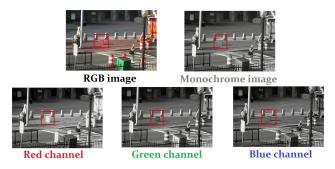
SNR_F scores for one subject with rest state as reference

[Emge, et al., 2016]

Tülay Adalı UMBC 40 / 56

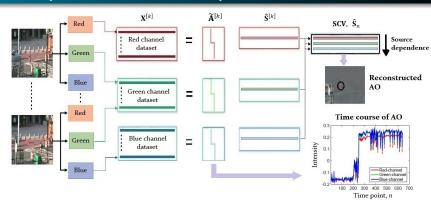
IVA provides advantages for abandoned object detection

Use IVA to perform *joint separation* of video from red, green, and blue channels



- Better estimation due to use of additional diversity, source dependence
- Additional robustness for detection through use of three temporal sequences
- Potential to make use of color information.

IVA improves the detection power



t-statistics for the step response

Video	ICA-GGD	· ·	IVA-GGD	
Abandoned Box	123.13	108.49	136.30	134.44
Tramstop	99.95	124.63	119.55	117.91
PV-Easy	287.15	92.42	90.13	91.27
PV-Hard	55.01	77.81	71.98	73.78
PV-Night	46.84	58.23	59.89	59.23

Multi-set vs multi-modal fusion

Multi-set data

Information collected using the same *modality* at different conditions, observation times, using multiple experiments or subjects,...

Datasets are of the same type and dimension

Multi-modal data

Information collected through different types of detectors/sensors

- Medical imaging data, hemodynamic response and electrical activity
- Remote sensing, optical, and radar imagery
- Audio and video data

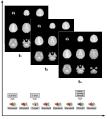
Datasets are of different nature, resolution, and size

Tülay Adalı UMBC 43 / 56

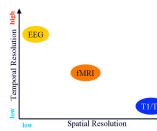
For example, consider data from three modalities

Structural MRI — Morphology

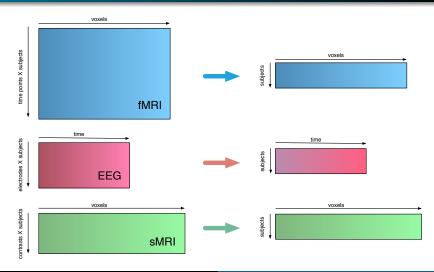
EEG - Electrical field



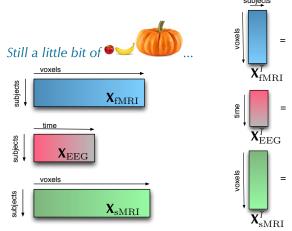
Functional MRI — Function through blood oxygen level changes

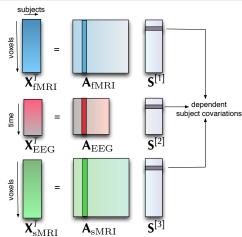


Extract <u>multivariate features</u> to create a dimension of coherence



Then need to identify the source of diversity, the statistical link across the datasets



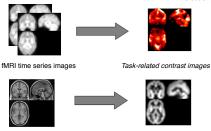


Transposed IVA (tIVA) model

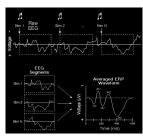
Tülay Adalı UMBC 46 / 56

Example using data collected during Auditory Oddball Task

Features



sMRI images



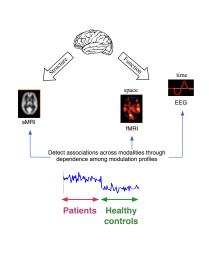
Event related potential (ERP)

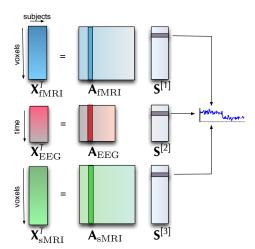
Data from 22 healthy controls and 14 patients with schizophrenia

Seamented gray matter images

Tülay Adalı UMBC 47 / 56

A potential use: Identify biomarkers through subject covariations

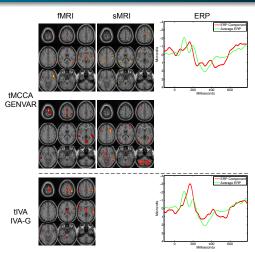




Tülay Adalı

UMBC

Patients with schizophrenia show less functional activity and less gray matter



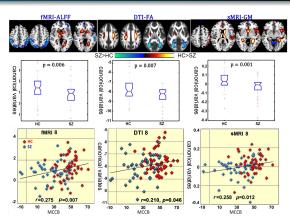
- Can identify components that discriminate only two modalities as well (p<0.05)
- Order selection enables exploratory analysis



[Adalı, et al., 2015]

Tülay Adalı UMBC 49 / 56

Using covariations, can also study correlation with other variables



47 schizophrenia patients (SZ) & 50 healthy controls (HC) & for red regions HC>SZ Correlation with MATRICS Consensus Cognitive Battery

[Sui, et al., 2015]

Tülay Adalı UMBC 50 / 56

Summary

Joint use of multiple types of diversity enables

- identification of a broader class of signals
- maximal use of all available information
- and true fusion among multiple data sets

How "diverse" we would like to be? Answer depends on many considerations

- model match
- computational cost
- robustness considerations
- among many others...

ICA, and more recently IVA, have proven fruitful for many applications, and there are many new possibilities for ICA, IVA, and beyond

Tülay Adalı UMBC 51 / 56

Acknowledgments

MLSP-Lab http://mlsp.umbc.edu

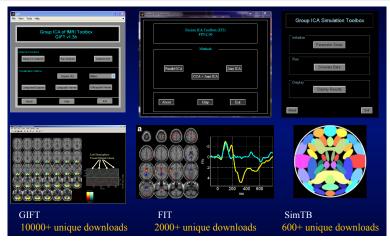
52 / 56

NSF Grants NSF-CCF 1117056 and NSF-IIS 1017718 NIH grants NIBIB R01 EB 005846 and NIBIB R01 EB 000840

Tülay Adalı UMBC

Software packages

http://mialab.mrn.org/



Funded by the NIH and the NSF

Tülay Adalı UMBC 53 / 56

Matlab codes http://mlsp.umbc.edu

Funded by the NIH and the NSF

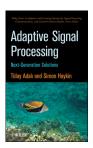
Tülay Adalı UMBC 54 / 56

Few references, resources...

- Review on ICA and IVA, IEEE Signal Processing Magazine, May 2014, by Adalı, Anderson, and Fu
- Special Issue on multi-modal data fusion, Proceedings of the IEEE, September 2015, by Adalı, Jutten, and Hansen

On complex-valued signal processing and complex ICA:

- Blind Identification and Separation of Complex Signals by Moreau and Adalı, ISTE/Wiley 2013
- Adaptive Signal Processing: Next Generation Solutions by Adalı and Haykin, Wiley, 2010



For references and additional resources: http://mlsp.umbc.edu

Tülay Adalı UMBC 55 / 56

And a final note...

In many fields where data come from multiple sources, and is rich in structure, it pays off to be

data driven,

multivariate,

and not to forget to celebrate

Tülay Adalı UMBC 56 / 56